Society Learning Goals	Society Sample Learning Objectives
Foundational Concept: Energy is required and	transformed in biological systems
	Compare and contrast biologically relevant forms of energy (e.g. kinetic energy versus potential energy, energy stored in bonds versus potential energy of concentration gradients).
	Identify and explain instances when energy is converted from one form to another.
What is the nature of biological energy? Many forms of energy are involved in biological processes: light, chemical, conformational, mechanical, and gradients. These forms can be understood in terms of the principles of thermodynamics. Energy is utilized for diverse purposes, such as the work required to synthesize biomolecules, create electrical and chemical gradients, perform mechanical work or stored within biomolecules.	Write a general chemical reaction and the corresponding mathematical expression that approximates its equilibrium constant (K_{eq}).
	Explain the relationship between equilibrium constants and reaction rate constants
	Apply knowledge of basic chemical thermodynamics to biologically catalyzed systems.
	Account for energy changes in the intermediate steps that define a biological process and predict the spontaneity of the overall process or an intermediate step
	Explain the properties of biomolecules with high-energy transfer potential that make them suitable as energy currency.
How do enzymes catalyze biological reactions?	Identify the factors contributing to the activation energy of a reaction.
Enzymes, which can be proteins or RNA, are macromolecules with	Explain transition state stabilization.
catalytic functions. They do not alter reaction equilibria; instead, they lower the activation energy barrier of a particular reaction allowing it to proceed more rapidly. Key concepts of enzyme kinetics are typically defined in terms of the initial rate of product formation, V_{o} , and various catalytic kinetic parameters, such as V_{max} or K_{cat} and K_m , which are either mathematically defined for enzymes that follow Michaelis-Menten kinetics or defined empirically for more complicated enzyme models.	Calculate the rate enhancement of an enzyme-catalyzed reaction.
	Explain what a substrate is in terms of being a reactant.
	Differentiate between the activation energy, the free energy
	and standard free energy of a reaction.
	Use kinetic parameters to compare enzymes.
	Distinguish the different forms of catalytic inhibition and
	explain how and why they differ.

	Quantitatively model how catalyzed reactions occur and calculate kinetic parameters of enzymes from experimental data. Explain how catalytic parameters vary as one varies substrate or enzyme concentration. Interpret the physical meaning of various kinetic parameters
	and describe the underlying assumptions and conditions (such as steady state or equilibrium) on which different parameters depend
	Discuss the concept of Gibbs free energy and how to apply it to chemical transformations
How is energy of chemical processes coupled in metabolic pathways? Biochemical systems couple energetically unfavorable reactions with energetically favorable reactions. These reactions can be part of catabolic pathways where complex substances are broken into simpler ones with the release of energy or anabolic pathways where complex molecules are synthesized with an input of energy.	Explain how endergonic and exergonic pathways can be coupled and how this applies to metabolism.
	Calculate the overall ΔG for a coupled reaction given the ΔG values for the component reactions.
	Explain the simplifying assumptions made in biochemistry that are consistent with physiological conditions and make "biochemical standard conditions" (steady state) different from the standard conditions (equilibrium conditions) normally referred to in chemistry.
	Predict how perturbing a system affects the actual free energy (both mathematically and conceptually).
	Explain evolutionary conservation of key metabolic pathways.
	Explain differences in energy use and production in different cells and different biological systems.
	Explain the role of gene duplication in the evolution of energy production and utilization by different organisms.
Foundational Concept: Macromolecular Struct	ture Determines Function and Regulation
What factors contribute to the size and complexity of biological macromolecules?	Discuss the diversity and complexity of various biologically relevant macromolecules and macromolecular assemblies in terms of evolutionary fitness.

Macromolecules are made up of basic molecular units. They	Describe the basic units of the macromolecules and the types
include the proteins (polymers of amino acids), nucleic acids (polymers of nucleotides), carbohydrates (polymers of sugars) and	of linkages between them.
	Compare and contrast the processes involved in the
lipids (with a variety of modular constituents). The biosynthesis	biosynthesis of the major types of macromolecules (proteins,
and degradation of biological macromolecules involves linear	nucleic acids and carbohydrates).
polymerization, breakdown steps (proteins, nucleic acids and	Compare and contrast the processes involved in the
lipids) and may also involve branching/debranching	degradation of the major types of macromolecules (proteins,
(Carbonydrates). These processes may involve multi-protein	nucleic acids and carbohydrates
complexes (e.g. hbosome, proteasome) with complex regulation.	Understand that proteins are made up of domains and be able
	to discuss how the protein families arise from duplication of a
	primordial gene.
	Recognize the repeating units in biological macromolecules
	and be able to discuss the structural impacts of the covalent
	and non-covalent interactions involved.
	Discuss the composition, evolutionary change and hence
What factors determine structure?	structural diversity of the various types of biological
Covalent and non-covalent bonding govern the three dimensional	macromolecules found in organisms.
structures of proteins and nucleic acids which impacts function.	Discuss the chemical and physical relationships between
The amino acid sequences observed in nature are highly selected	composition and structure of macromolecules.
for biological function but do not necessarily adopt a unique folded	Compare and contrast the primary, secondary, tertiary and
structure. The structure (and hence function) of macromolecules is	quaternary structures of proteins and nucleic acids.
governed by foundational principles of chemistry such as: covalent	Use various bioinformatics approaches to analyze
interactions, the hydrophobic effect and dynamic aspects of	macromolecular primary sequence and structure.
molecular structure. The sequence (and hence structure and function) of proteins and nucleic acids can be altered by alternative splicing, mutation or chemical modification. Sequences (and hence structure and function) of macromolecules can evolve to create altered or new biological activities.	Compare and contrast the effects of chemical modification of
	specific amino acids on a three dimensional structure of a
	protein.
	Compare and contrast the ways in which a particular
	macromolecule might take on new functions through
	evolutionary changes.
	Use various bioinformatics and computational approaches to
	compare primary sequences and identify the impact of
	conservation and/or evolutionary change on the structure

	and function of macromolecules.
	Predict the effects of mutations on the activity, structure or
	stability of a protein and design appropriate experiments to
	assess the effects of mutations.
	Propose appropriate chemical or chemical biology
	approaches to explore the localization and interactions of
	biological macromolecules.
	Discuss how mutations of a duplicated gene generate
	functional diversity.
	Evaluate chemical and energetic contributions to the
	appropriate levels of structure of the macromolecule and
	predict the effects of specific alterations of structure on the
	dynamic properties of the molecule.
	Use mechanistic reasoning to explain how an enzyme or
How are structure and function related?	ribozyme catalyzes a particular reaction.
Macromolecules interact with other molecules using a variety	Discuss the basis for various types of enzyme mechanisms.
of non-covalent interactions. The specificity and affinity of	
these interactions are critical to biological function. Some	Calculate enzymatic rates and compare these rates and relate
macromolecules catalyze chemical reactions or facilitate	these rates back to cellular or organismal homeostasis.
nhysical processes (e.g. molecular transport) allowing them	Discuss various methods that can be used to determine
to proceed in ambient conditions. These processes can be	affinity and stoichiometry of a ligand-macromolecule complex
auantitatively described by rate laws and thermodynamic	and relate the results to both thermodynamic and kinetic
principles (e.g. collision theory transition state theory rate	data.
laws and equilibria, the effects of temperature and structure	Critically assess contributions to specificity in a ligand-
and chemical reactivity. Coulomb's Law Newton's laws of	macromolecule complex and design experiments to both
and chemical reactivity, Couldn's Law, Newton's laws of	assess contributions to specificity and test hypotheses about
thermodynamics, and the concent of randomness and	ligand specificity in a complex
	Predict the biological and chemical effects of either mutation
ριουαυπικγ).	or ligand structural change on the affinity of binding and
	design appropriate experiments to test their predictions.
What is the role of noncovalent intermolecular interactions?	Discuss the impact of specificity or affinity changes on
The interactions between macromolecules and other molecules	biological function and any potential evolutionary impact.

rely on the same weak, noncovalent interactions that play the major role in stabilizing the three-dimensional structures of the macromolecules themselves. The hydrophobic effect, ionic interactions and hydrogen bonding interactions are prominent. The	Discuss the various methods that can be used to determine affinity and stoichiometry for a ligand-macromolecule complex and relate the results to both thermodynamic and kinetic data
structural organization of interacting chemical groups in a binding site or an active site lends a high degree of specificity to these interactions. The specificity and affinity of these interactions are critical to biological function.	Discuss the interactions between a variety of biological molecules (including proteins, nucleic acids, lipids, carbohydrates and small organics, etc.) and describe how these interactions impact specificity or affinity leading to changes in biological function.
	Predict the effects of either mutation or ligand structural change on the affinity of binding and design appropriate experiments to test their predictions.
	Discuss the relationship between the temperature required for denaturation (T _m) and macromolecular structure.
How is macromolecular structure dynamic? Macromolecular structure is dynamic over a wide range of time scales, and the dynamic structural changes, large and small, are often critical for biological function. Small changes can come in the form of localized molecular vibrations that can facilitate the access of small molecules to interior portions of the macromolecule. Large	Discuss the time scales of various conformational effects in biological macromolecules and design appropriate experiments to investigate ligand induced changes in conformation and dynamics. Discuss the structural basis for the dynamic properties of
conformational changes can come in the form of the motions of different macromolecular domains relative to each other to facilitate catalysis or other forms of work. Proteins can contain intrinsically unstructured domains. The lack of structure in solution may facilitate a function in which interactions must occur	properties that might result from alteration of primary sequence.
	Predict whether a sequence is ordered or disordered and discuss potential roles for disordered regions of proteins.
promiscuously with several other molecules. The dynamic structure of macromolecules enables rapid changes that impact the homeostasis of biochemical and molecular biological processes	Critically discuss the evidence for and against the roles of dynamics in macromolecular function.
How is the biological activity of macromolecules regulated? The biological activity of macromolecules is often regulated in one	Compare and contrast various mechanisms for regulating the function of a macromolecule or an enzymatic reaction or pathway.
modifiers, synthesis, degradation and compartmentalization).	Discuss the advantages and disadvantages of regulating a reaction allosterically

	Discuss examples of allosteric regulation, covalent regulation and gene level alterations of macromolecular structure- function
	Use experimental data to assess the type of regulation in response to either homotropic or heterotropic ligands on a macromolecule.
	Design a model to explain the regulation of macromolecule structure-function.
	Describe how evolution has shaped the regulation of macromolecules and processes
	Describe how changes in cellular homeostasis affect signaling and regulatory molecules and metabolic intermediates.
How is structure (and hence function) of macromolecules governed by foundational principles of chemistry and physics?	Relate basic principles of rate laws and equilibria to reactions and interactions and calculate appropriate thermodynamic parameters for reactions and interactions.
The structure (and hence function) of macromolecules is governed by the foundational principles of chemistry (including covalent bonds and polarity; bond rotations and vibrations; hydrogen bonds	Explain how a ligand, when introduced to a solution containing a macromolecule to which it can bind, interacts with the macromolecule.
and non-covalent interactions; the hydrophobic effect; dynamic aspects of molecular structure; collision theory; transition state	Explain, using basic principles, the effects of temperature on an enzyme catalyzed reaction
theory; rate laws and equilibria; the effects of temperature and structure and chemical reactivity) and physics (including Coulomb's Law; Newton's laws of motion; energy and stability; friction; diffusion; thermodynamics; and the concept of randomness and probability).	Discuss the dynamic properties of a macromolecule using foundational principles of physics
How are a variety of experimental and computational	Propose a purification scheme for a particular molecule in a
structure, dynamics and function of biological	molecules in the mix.
macromolecules? A variety of experimental and computational approaches can be used to observe and quantitatively measure the structure,	Either propose experiments that would determine the quaternary structure of a molecule or interpret data pertaining to tertiary and quaternary structure of molecules

dynamics and function of biological macromolecules. Equations can be derived from models and used to predict outcomes or analyze data. Data can be analyzed statistically to assess the correctness of the model and the reliability of the data.	Explain how computational approaches can be used to explore protein-ligand interactions and discuss how the results of such computations can be explored experimentally Compare and contrast the computational approaches available to propose a three dimensional structure of a macromolecule and discuss how the proposed structure could be validated experimentally. Analyze kinetic or binding data to derive appropriate parameters and assess the validity of the model used to
Foundational Concepts Information starage an	describe the phenomenon.
What is a genome? A genome is an organism's complete set of DNA, including all of its genes. Each genome contains all of the information needed to build and maintain that organism. Some noncoding sequences enable our cells to produce different amounts of proteins at different times. For example, control sequences contain instructions to tell the cell how to switch genes on and off. Other noncoding sequences are part of genes but do not directly code for proteins. These are thought to help the cell generate a number of different proteins from one gene. More than half of the DNA in our genome is made up of repeated sequences, which appear to stabilize chromosomes; noncoding regions may have a role in spacing out the coding sequences so that they can be activated independently.	 Define what a genome consists of and how the information in the various genes and other sequence classes within each genome is used to store and express genetic information. Discuss how the genome is organized and packaged in prokaryotes and eukaryotes. Discuss tools used to study expression, conservation and structure of an organism at the genome level. Explain the role of repetitive and non-repetitive DNA and how its relative abundance varies from prokaryotes to eukaryotes.
How does the nucleotide sequence of the gene lead to biological function? The information contained in the nucleotide sequence of a genome is organized into various elements, including coding regions, which contain three base codons coding for amino acids, which are transcribed to messenger RNA. The messenger RNA is translated to	 Explain the role of repetitive and non-repetitive DNA and how its relative abundance varies from prokaryotes to eukaryotes. Explain the process of gene regulation connecting how extracellular signals can result in a change of gene expression. Discuss how genes are organized and contrast the different approaches used in prokaryotic and eukaryotic organisms.

give the primary sequence of a protein and regulatory elements.	Explain how mRNA processing occurs and how splicing
The transcribed coding region for a given protein may contain	affects the diversity of gene products in eukaryotic organisms.
introns and exons in eukaryotic cells. The amino acid sequence of	
a protein gives rise to biological function through stably folded	
regions and/or intrinsically disordered regions.	
How do genomes transmit information from one generation	Explain the differences of mitosis and meiosis and relate them
to the next?	to the process of cellular division.
The primary concern of cell division is the maintenance of the	•
original cell's genome. The genomic information that is stored	Illustrate how DNA is replicated and genes are transmitted
in chromosomes must be replicated, and the duplicated genome	from one generation to the next in multiple types of
must be separated cleanly between cells. Somatic cell lines are	organisms including bacteria, eukarvotes, viruses and
diploid (2n chromosome complement), and mitotic division	retroviruses.
normally results in two daughter cells, each with chromosomes and	Apply the concepts of segregation and independent
genes identical to those of the parent cell. Germline cells, called	assortment to traits inherited from parent to offspring and
gametes, are haploid (having the haploid or the n chromosomal	discuss how they increase genetic variation
complement) and reproduce by meiosis.	allocass now ency mercase genetic variation.
How are genomes maintained?	State how the cell ensures high fidelity DNA replication and
Throughout its lifetime, the DNA in a cell is under constant	identify instances where the cell employs mechanism for
metabolic and environmental assault leading to damage. The	damage repair.
ultraviolet (UV) component of sunlight, ionizing radiation and	Explain what a mutation is at the molecular level how it
numerous genotoxic chemicals, including the (by)products of	arises and how it could not antially affect the organism from
normal cellular metabolism (e.g. reactive oxygen species such as	anses and now it could potentially affect the organism from
superoxide anions, hydroxyl radicals and hydrogen peroxide),	gene expression to indess.
constitute a permanent enemy to DNA integrity. Hydrolysis of	Relate how the cell cycle and genome maintenance are
nucleotide residues leaves non-instructive abasic sites.	coordinated and how disruptions in this coordination could
Spontaneous or induced deamination of cytosine, adenine,	affect the organism.
guanine or 5-methylcytosine converts these bases to the miscoding	List events that result in genomic instability and explain how
uracil, hypoxanthine, xanthine and thymine, respectively. Left	the cell responds to restore order and stability.
unchecked, the resulting genomic instability initiates cancer and	
other age-related disorders. Inherited or acquired deficiencies in	Construct relationships between shremesone and collular
genome maintenance systems contribute significantly to the onset	Construct relationships between chromosome and centular
of cancer. Over time, DNA accumulates changes that activate	structures (e.g. telomere, centromeres and centrosomes) and
proto-oncogenes and inactivate tumor-suppressor genes. Cells have	explain how these structures are responsible for and/or
evolved nucleotide- and base-excision repair mechanisms,	involved in genomic stability.

homologous recombination, end joining, mismatch repair and	
telomere metabolism as mechanisms to maintain the integrity of	
the genome.	

Foundational Concept: Discovery requires objective measurement, quantitative analysis, and clear communication.

	Accurately prepare and use reagents and perform the required
	experiments.
	When presented with an observation, develop a testable and
What is the scientific process?	falsifiable hypothesis.
The process of science combines creative ideas, experimentation,	When provided with a hypothesis, identify the appropriate
and data analysis. Scientists develop a hypothesis, design and	experimental observations and controllable variables.
conduct appropriate experiments. Experimental results are	Determine averages and standard deviations to relate the
analyzed and data interpreted using appropriate quantitative modeling and simulation tools	significance of experimentally obtained data.
modening and simulation tools.	Use equations and models to predict outcomes of experiments.
	Use appropriate equations to analyze experimental data and
	obtain parameters.
	Identify, locate and use the primary literature.
	Use databases and bioinformatics tools.
what skills are needed to access, comprehend and	When provided with appropriate background information,
communicate science? Scientists access, assess and use available information and present data in an appropriate context in a variety of ways at different levels.	identify consistencies and inconsistencies.
	Explain the big picture aspects of current challenges in the
	molecular life sciences.
	Use visual and verbal tools to explain concepts and data.
	Translate science into everyday examples.
	Explain the importance of and keep an accurate laboratory
	notebook.
What constitutes a scientific community of practice? Science is interdisciplinary and relies on collaboration, effective teamwork, safety, and ethical practices.	Given a case study, identify both scientific and societal ethical
	aspects.
	Explain cross-disciplinary concepts such as modularity, energy,
	modeling scientific phenomena, change over time and the
	differences between stochastic and deterministic phenomena
	Access and interpret safety information and conduct lab work

	safely and ethically.
	Give and take directions to be an effective team member.
Underlying Concept: Evolution	
What is the significance of evolution?	Describe evolution as genetic change in a population over
Evolution is genetic change within a population over time.	time.
Understanding evolutionary processes and the supporting evidence	Analyze preexisting and novel data and relate the findings in
is an integral part of the molecular life sciences. It explains many	light of evolution.
present day issues, such as crop availability and pesuicide	Relate evolution to concepts in biochemistry and molecular
medicine and regulatory mechanisms in cellular developmental	biology.
and behavioral biology.	
	Explain how mechanisms of evolution cause variation within
What we the mechanisme of evelotion?	a population.
Many machanisms may drive evolution. These include mutation	Distinguish between random and nonrandom evolutionary
migration (gene flow) genetic drift (chance changes from	processes.
generation to generation) and natural selection.	Demonstrate their understanding of the mechanisms of
	evolution to relevant issues, such as antibiotic resistance, the
	occurrence of genetic disorders or cancer therapeutics.
How is natural selection a key evolutionary mechanism?	Describe the process of natural selection.
Evolution by natural selection results from differential reproductive	
successful The fitness of an individual and its genotype is directly	Distinguish between individual fitness and adaptation of
determined by its relative reproductive success. The fittest	populations.
individuals will pass their genes to more offspring, driving the	Explain how selection of phenotypes affects genotype
evolution of the population. In this way, the population becomes	transmission.
better-suited (adapted) to its environment. Multiple lines of	Synthesize and evaluate supporting evidence for the theory of
evidence support evolution by natural selection, including the fossil	natural selection
record, homologies and direct observation in laboratory and field	
	Explain how colle can acquire new genetic material
vvnat is the molecular basis of evolution?	Explain now cens can acquire new genetic matellal.
Organismal trails are determined at the genetic and epigenetic	

level. Molecular modifications at these levels may determine the RNA and protein expression patterns in a cell, influencing the phenotype of the organism. Genetic modifications can also arise from the acquisition of new genetic material via processes such as horizontal gene transfer, endosymbiosis and viral vector transfer. Transmission of these heritable alterations may lead to changes in the genetic composition of a population, thereby driving evolution.	Explain how mutations and epigenetic changes influence gene expression, structure and function of gene products and the fitness of an organism. Using genetic information, categorize organisms and establish phylogenetic relationships.
What is the biological need for homeostasis?	Describe why maintenance of homeostasis is advantageous to
Biological homeostasis is the ability to maintain relative stability	an organism.
and function as changes occur in the internal or external	Define homeostasis in a biochemical context to both
environment. Organisms are viable under a relatively narrow set of	scientifically trained and lay audiences.
conditions. As such, there is a need to tightly regulate the	Describe how homeostatic pathways and mechanisms have
concentrations of metabolites and small molecules at the cellular	been conserved throughout evolution
level to ensure survival. To optimize resource use and to maintain	Appraise the costs and benefits of different homeostatic
conditions, the organism may sacrifice efficiency for robustness.	mechanisms to an organism.
or progression of disease or lead to cell death	Relate different environmental factors necessitating
or progression of disease of read to een death.	nomeostasis to a specific adaptation.
	Explain that a system at chemical equilibrium (or just
	required to maintain that condition
How are stoody state processes and homeostasis linked?	Apply the principles of kinetics to describe flux through
A system that is in a story state remains constant over time, but	biochemical pathways.
that constant state requires continual work. A system in a steady	Discuss a metabolic pathway in terms of equilibrium and Le
state has a higher level of energy than its surroundings.	Chatelier's principle.
Biochemical systems maintain homeostasis via regulation of gene	Relate the laws of thermodynamics to homeostasis and
expression, metabolic flux and energy transformation but are never	explain how the cell or organism maintains homeostasis.
at equilibrium.	Model how perturbations to the steady state can result in
	changes to the homeostatic state.
	Propose how resources stored in the homeostatic state can be
	utilized in times of need.
How is homeostasis quantified?	Describe experiments discussing how signaling and

Multiple reactions with intricate networks of activators and	regulatory molecules and metabolic intermediates can be
such networks can lead to activation of previously latent metabolic pathways or even to unpredicted interactions between components of these networks. These pathways and networks can be mathematically modeled and correlated with metabolomics data and kinetic and thermodynamic parameters of individual components to quantify the effects of changing conditions related to either normal or disease states.	quantitated in the laboratory.
	nothways and describe the roles they play in homeostasis
	Coloulate engumetic rates and compare these rates and relate
	these rates had to collular or organismal homostopic
	Lifese faces back to cellular of organismal nonneostasis.
	Explain that organismal nomeostasis can be measured in
	multiple ways and over different time scales (seconds,
	minutes, nours, days and months).
	Given a metabolic network and appropriate data, predict the
	outcomes of changes in parameters of the system such as
	increased concentrations of certain intermediates or the
	changes in the activity of certain enzymes.
How is homeostasis controlled? Homeostasis is maintained by a series of control mechanisms functioning at the organ, tissue or cellular level. These control mechanisms include substrate supply, activation or inhibition of individual enzymes and receptors, synthesis and degradation of enzymes, and compartmentalization. The primary components responsible for the maintenance of homeostasis can be categorized as stimulus, receptor, control center, effector and feedback mechanism.	Discuss now chemical processes are compartmentalized in
	the organism, organ and the cell.
	Explain why biochemical pathways proceed through the
	intermediates that they do (gradual oxidation or reduction)
	and why pathways share intermediates
	Summarize the different levels of control (including reaction
	compartmentalization, gene expression, covalent modification
	of key enzymes, allosteric regulation of key enzymes,
	substrate availability and proteolytic cleavage) and relate
	these different levels of control to homeostasis.
	Compare the temporal aspect of different control mechanisms
	(e.g. how quickly phosphorylation occurs versus changes in
	gene expression).
	Hypothesize why and how organs evolved with specialized
	function in metazoans.
	Discuss different models of allosteric regulation.
	Formulate models relating changes in flux through a pathway
	to other pathways and overall homeostasis.
	Defend why anabolic and catabolic pathways are

	compartmentalized in the cell.
How do cells and organisms maintain homeostasis? Homeostasis in an organism or colony of single celled organisms is regulated by secreted proteins and small molecules often functioning as signals. Homeostasis in the cell is maintained by regulation and by the exchange of materials and energy with its surroundings.	Describe how the cell and organism store resources (both in
	terms of stored energy and chemical building blocks) for
	times of need and how they mobilize these resources.
	Integrate homeostasis from the cellular to the organismal
	level. In other words, students should be able to describe how
	a complex metazoan can have both a cellular and organismal
	response to maintain homeostasis.
	Compare and contrast homeostasis in different organisms.
	Describe homeostasis at the level of the cell, organism or
	system of organisms and hypothesize how the system would
	react to deviations from homeostasis.